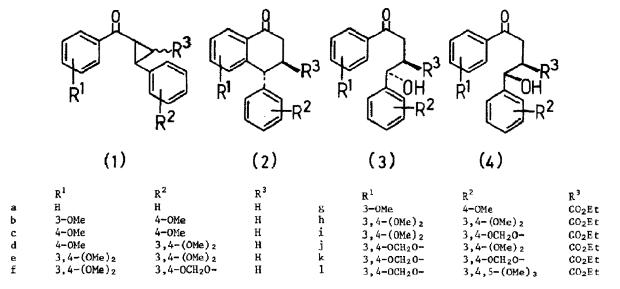
Tetrahedron Letters Vol. 21, pp 3517 - 3520 © Pergamon Press Ltd. 1980. Printed in Great Britain


TRAPPING THE INTERMEDIATE INVOLVED IN THE INTRAMOLECULAR CYCLISATION OF CYCLOPROPYL KETONES. A CONVENIENT PREPARATION OF OPEN-CHAIN Y-HYDROXY KETONES.

William S. Murphy^{*} and Sompong Wattanasin Department of Chemistry, University College, Cork, Ireland

The concerted mechanism for the stannic chloride catalysed cyclisation of anyl cyclopropyl ketones is disproved by trapping the intermediate. The reaction provides a facile route to γ -hydroxyketones.

Rigid cyclopropyl ketones were converted to benzodecalones by Stork¹ using Lewis acid catalysis. The non-rigid analogues were found by Grieco² to undergo similar reactions. Both authors concluded that cyclopropane cleavage occurred with aryl participation in a concerted mechanism. We have shown³ that Lewis acids also catalyse the intramolecular cyclisation of aryl cyclopropyl ketones e.g. (lb) to 1-aryl tetralones (2b) and have applied this reaction successfully⁴ to the synthesis of the known⁵ podophyllotoxin precursor (21). However, the side-products - the γ -hydroxybutanomes (3) and (4) - were occasionally formed³ under the conditions (SnCl₄, CH₂Cl₂ or C₆H₅, room temp.). This result seriously limited the synthetic potential of this cyclisation route to 1-aryltetralones and also in the light of Stork's¹ and Grieco's² conclusion, made the mechanism unclear.

We now find that when SnCl₄ is used with nitromethane as solvent⁶ the carbinols (3) and

Entry	Reactant	Conditions ^a		Product (yield, %) ^C		Ratio ^d		
		Temperature (⁰ C)	Time ^b	(2)	(3) + (4)	(3)	:	(4)
1	(1a)	room temp.	30 min.	-	90			
2	11	0 ⁰	6 h	-	90			
3	(1b)	0°	5 min	90	trace			
4	18	$-15^{\circ} \rightarrow -20^{\circ}$	20 min	37	50			
5	(1c)	$-15^{\circ} \rightarrow -20^{\circ}$	20 min	-	71			
6	(1d)	room temp./PhH	10 h	-	70			
7	11	$-15^{\circ} \rightarrow -20^{\circ}$	20 _/ min		, 57 ^e			
8	(le)	room temp./PhH	10 h	15	60			
9	18	0°	35 min	60	30			
10	11	$-15^{\circ} \rightarrow -20^{\circ}$	20 min	55	25			
11	(1f)	room temp./PhH	47 h	35	36			
12	(1g)	room temp.	2 h	9 0	-			
13	11	0 ⁰	5 min	-	90	58	:	42
14	(1h)	room temp./CH ₂ Cl ₂	50 h	27	16			
15	11	room temp.	45 h	9 0	-			
16	11	00	50 min	-	85	53	:	47.
17	(1i)	room temp.	70 h	80	-			
18	**	room temp.	30 h	(3):	$(4) \simeq 1:1^{f}$			
19	98	0 °	75 min	-	85	34	:	66
20	(1j)	room temp.	70 h	628	-			
21	17	0 °	50 min	-	88	50	:	50
22	(1k)	room temp.	120 h	70	· _			
23	11	room temp.	45 h	58	27			
24	11	0 ⁰	75 min.	-	83	40	:	60
25	(11)	room temp.	120 h	50	39			
26	н	0 °	3 h	-	trace			
27	(3f)	room temp.	12 d	55 ^e				

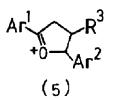
Stannic Chloride Catalysed Reactions

^aAll reactions, unless otherwise stated, were carried out in nitromethane. ^bfollowed by t.l.c. ^cisolated yield. ^dratio sensitive to work-up, determined by n.m.r. ^ereactant also recovered. ^fnot isolated. ^gl-(3',4'-methylenedioxy), 3-ethoxycarbonyl-6,7-dimethoxy naphalene also isolated (29%).

TABLE

(4) are obtained exclusively by quenching at low temperature (see entries 2, 5, 7, 13, 16, 19, 21, 24 in Table). The reaction is general and compatable with a wide range of functionality including $R^3 = CO_2Et$. Since the cyclopropyl ketones (1) are prepared in one step^{3,4} from chalcones⁷ this result constitutes a short, facile and high yield route to the carbinols (3) and (4) and opens a new approach to 1,4-diarylbutane lignans⁸ and 1-arylnaphthalene lignans.⁹

When the reaction times and temperature are increased complete conversion to the tetralones $(2)^{10}$ is observed (see entries 3, 12, 15, 17, 20, 22). Cyclisation of (1) is general providing R¹ is activating (see entries 1, 2), although the rate of reaction is noticeably reduced by the ethoxycarbonyl group (compare entries 3 and 4 with 13).¹¹


Trapping the intermediate as the carbinols (3) and (4) disproves a concerted mechanism for the conversion of (1) to (2) in all cases, including the most reactive substrates (1b, entry 4) and (1e, entry 9). This result was confirmed by interrupting the cyclisation reactions (see entries 18 and 23) and by the conversion of the combined carbinols (3f) and (4f) to the tetralone (2f) (entry 27). This is the first time that an intermediate from cationic cyclopropane cleavage has been intercepted in the presence of a neighbouring activated aryl group. The cyclisation of (1) to (2) which can be considered a 5-Endo cyclisation¹² is non-concerted probably for stereoelectronic reasons. In contrast, both systems investigated by Stork¹ and Grieco² involved Exo-cyclisation.

Concerning the nature of the intermediate, we suggest a 2,5-diaryl oxacyclopent-l-enyl cation (5)¹³ since it is both a well established precursor of Y-hydroxyketones and it accounts for the anomously long life of the intermediate undergoing cyclisation (compare entries 22 and 24).

REFERENCES

- 1. G. Stork and M. Gregson, J. Amer. Chem. Soc., 1969, 91, 2371.
- 2. P.A. Grieco and R.S. Finkelher, Tetrahedron Letters, 1974, 527.
- 3. W.S. Murphy and S. Wattanasin, <u>Tetrahedron Letters</u>, 1980, 1887.
- 4. W.S. Murphy and S. Wattanasin, J.C.S. Chem. Comm., 1980, 262.
- 5. W.J. Gensler and C.D. Gatsonis, <u>J. Org. Chem</u>., 1966, <u>31</u>, 4004.
- Both CH₂Cl₂ and C₅H₆ were also used at 0⁰ but results were less satisfactory. Reactions were heterogeneous and the rates were slower.
- 7. W.S. Murphy and S. Wattanasin, Synthesis, in press.

- 8. R. Stevenson in 'Chemistry of Lignans' Ed. C.B.S. Rao, Andhra Univ. Press, 1978, p. 65.
- 9. W.S. Murphy and S. Wattanasin, to be reported.
- 10. In all cases when $R^3 = CO_2Et$, the *trans*-isomer only is formed.
- 11. The relative rates of tetralone formation (compare, for example, entries 1 with 3, 6 with 8, 15 with 20) are consistent with the effects of substituents on the rates of electrophilic substitution, see C. Baddeley, G. Holt, N.H.P. Smith and F.A. Whittaker, <u>Nature</u>, 1951, <u>168</u>, 368; D.A. Evans, P.A. Cain, and R.Y. Wong, <u>J. Amer. Chem. Soc</u>., 1977, <u>29</u>, 7083; Z. Horii, M. Tsujiuchi and T. Momose, <u>Tetrahedron Letters</u>, 1969, 1079; <u>idem.</u>, J.C.S. Chem. Comm., 1968, 653.
- 12. J.E. Baldwin, J.C.S. Chem. Comm., 1976, 734.
- 13. The intermediacy of cation (5)

and analogues has been

established. They are converted to γ-hydroxy-ketones by aqueous quench, see C.U. Pittman and S.P. McManus, <u>J. Amer. Chem. Soc</u>., 1969, <u>91</u>, 5915; S.H. Pines and A.W. Douglas, <u>ibid</u>., 1976, <u>98</u>, 8119; R.C. Larock and J.C. Bernhardt, <u>J. Org. Chem</u>., 1978, 43, 710.

(Received in UK 27 June 1980)